Research & Projects

NOA is divided into three project areas A, B, C and one service project area Z.
Image: Bild von Michal Jarmoluk auf Pixabay

Scientific vision and goals

Overview Overview Image: SFB NOA

NOA's vision is to develop a fundamental understanding of nonlinear optical processes down to the atomic scale. Thus, we will explore light-matter interactions with sub-nanometer resolution, advance current simulation schemes to enable a synergetic modeling of electromagnetic fields and quantum dynamics, and synthesize new sub-wavelength scale materials with high- and tailored nonlinearity. This will not only contribute to an improved fundamental understanding of nonlinear optics, but will also lay the foundation for new applications in frequency conversion and spectroscopy.

Specifically, (short-term) goals of the first funding period are:

  • advancing theoretical and numerical approaches for a comprehensive understanding and an improved prediction of the nonlinear optical response of nanostructured matter;
  • exploring the potential of optically induced tunneling for enhancing optical nonlinearities;
  • designing and realizing artificial nonlinear optical materials with tailored nonlinearities via nanostructuring or stacking of atomically thin films;
  • advancing background-free sensing via frequency conversion and selective nonlinear enhancement of the optical signal of investigated specimen;
  • monitoring ultrafast dynamics of electrons in matter with ultimate, i.e., single-atom spatial resolution, and
  • investigating and modeling the evolution of crystal electrons in strong light fields.

Long-term goals (of subsequent funding periods) are:

  • achieving spatio-temporal control of electron and field dynamics on the sub-cycle optical scale;
  • enhancing and tailoring higher harmonic generation in solids by controlling the pump and nanostructuring the sample;
  • synergetic modeling of quantum many-body dynamics and electromagnetic field evolution in mesoscopic system;
  • developing atomically resolved design concepts for artificial materials with customized nonlinear response;
  • pushing the limits of nonlinear optical detection down to single-molecule sensitivity with ultra-high chemical resolution and specificity, and
  • developing all-optical lab-on-a-chip devices utilizing nonlinear optics.

To achieve these goals, NOA is devided into the three project areas A, B, C and the service project Z.

Our Projects

A – Modeling nonlinear optics down to atomic scales
B – Nonlinear optics of atomically thin 2D systems
C – Plasmon-enhanced nonlinear optics in low-dimensional hybrids
Z – Management of the CRC